- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Pandey, Shova (2)
-
Baral, Sonu S. (1)
-
DeLeo, Kathryn R. (1)
-
DiMario, Patrick J (1)
-
DiMario, Patrick J. (1)
-
Houser, Alex (1)
-
James, Allison (1)
-
Maricle, Audrey K (1)
-
Nguyen, An Tri (1)
-
Sewell, Phelan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
R2 retrotransposons reside exclusively within the 28S regions of 10–20% of all rDNA genes comprising the nucleolar organizer loci on the X and Y chromosomes of Drosophila melanogaster. These R2-inserted genes are normally silent and heterochromatic. When expressed, however, the R2 transcript is co-transcribed with the 28S rRNA. Self-cleavage releases a 3.6 kb mature R2 transcript that encodes a single protein with endonuclease and reverse transcriptase activities that facilitate R2 element transposition by target-primed reverse transcription. While we know the molecular details of R2 transposition, we know little about the genetic mechanisms that initiate R2 transcription. Here, we examine R2 expression in wild type versus mutant backgrounds. R2 expression in stage 1–4 wild type egg chambers was variable depending on the stock. R2 expression was silent in wild type stages 5–10 but was consistently active during nurse cell nuclear breakdown in stages 12–13 regardless of the genetic background. Massive R2 expression occurred in stages 5–10 upon loss of Udd, an RNA Pol I transcription factor. Similarly, loss of Nopp140, an early ribosome assembly factor, induced R2 expression more so in somatic tissues. Interestingly, over-expression of the Nopp140-RGG isoform but not the Nopp140-True isoform induced R2 expression in larval somatic tissues, suggesting Nopp140-RGG could potentially affect rDNA chromatin structure. Conversely, Minute mutations in genes encoding ribosomal proteins had minor positive effects on R2 expression. We conclude that R2 expression is largely controlled by factors regulating RNA Pol I transcription and early ribosome assembly.more » « lessFree, publicly-accessible full text available June 1, 2026
-
DeLeo, Kathryn R.; Baral, Sonu S.; Houser, Alex; James, Allison; Sewell, Phelan; Pandey, Shova; DiMario, Patrick J. (, International Journal of Molecular Sciences)Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels.more » « less
An official website of the United States government
